RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2008 Volume 8, Number 4, Pages 697–709 (Mi mmj326)

This article is cited in 1 paper

Invariant Function Algebras on Compact Commutative Homogeneous Spaces

V. M. Gichev

Omsk Branch of Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Science

Abstract: Let $M$ be a commutative homogeneous space of a compact Lie group $G$ and $A$ be a closed $G$-invariant subalgebra of the Banach algebra $C(M)$. A function algebra is called antisymmetric if it does not contain nonconstant real functions. By the main result of this paper, $A$ is antisymmetric if and only if the invariant probability measure on $M$ is multiplicative on $A$. This implies, for example, the following theorem: if $G^\mathbb C$ acts transitively on a Stein manifold $\mathcal M$, $v\in\mathcal M$, and the compact orbit $M=Gv$ is a commutative homogeneous space, then $M$ is a real form of $\mathcal M$.

Key words and phrases: invariant function algebra, commutative homogeneous space, maximal ideal space.

Received: December 4, 2007

Language: English

DOI: 10.17323/1609-4514-2008-8-4-697-709



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024