RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2009 Volume 9, Number 3, Pages 569–623 (Mi mmj358)

This article is cited in 18 papers

Motivic Poisson summation

Ehud Hrushovski, David Kazhdan

Institute of Mathematics, the Hebrew University of Jerusalem, Jerusalem, Israel

Abstract: We develop a “motivic integration” version of the Poisson summation formula for function fields, with values in the Grothendieck ring of definable exponential sums. We also study division algebras over the function field, and show (under some assumptions) that the Fourier transform of a conjugation-invariant test function does not depend on the form of the division algebra. This yields a motivic-integration analog of certain theorems of Deligne–Kazhdan–Vigneras.

Key words and phrases: motivic integration, Poisson summation, division algebras, Grothendieck ring.

MSC: 03C60, 11R56, 22E55

Received: October 23, 2008

Language: English

DOI: 10.17323/1609-4514-2009-9-3-569-623



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024