Abstract:
We develop a “motivic integration” version of the Poisson summation formula for function fields, with values in the Grothendieck ring of definable exponential sums. We also study division algebras over the function field, and show (under some assumptions) that the Fourier transform of a conjugation-invariant test function does not depend on the form of the division algebra. This yields a motivic-integration analog of certain theorems of Deligne–Kazhdan–Vigneras.
Key words and phrases:motivic integration, Poisson summation, division algebras, Grothendieck ring.