RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2009 Volume 9, Number 3, Pages 665–721 (Mi mmj360)

This article is cited in 8 papers

Geometricity of the Hodge filtration on the $\infty$-stack of perfect complexes over $X_\mathrm{DR}$

Carlos Simpson

CNRS, Laboratoire J. A. Dieudonné, Université de Nice-Sophia Antipolis, Nice, France

Abstract: We construct a locally geometric $\infty$-stack $\mathscr M_\mathrm{Hod}(X,\mathrm{Perf})$ of perfect complexes with $\lambda$-connection structure on a smooth projective variety $X$. This maps to $\mathbb A^1/\mathbb G_m$, so it can be considered as the Hodge filtration of its fiber over 1 which is $\mathscr M_\mathrm{DR}(X,\mathrm{Perf})$, parametrizing complexes of $\mathscr D_X$-modules which are $\mathscr O_X$-perfect. We apply the result of Toen–Vaquié that $\mathrm{Perf}(X)$ is locally geometric. The proof of geometricity of the map $\mathscr M_\mathrm{Hod}(X,\mathrm{Perf})\to\mathrm{Perf}(X)$ uses a Hochschild-like notion of weak complexes of modules over a sheaf of rings of differential operators. We prove a strictification result for these weak complexes, and also a strictification result for complexes of sheaves of $\mathscr O$-modules over the big crystalline site.

Key words and phrases: Hodge filtration, $\lambda$-connection, perfect complex, $D$-module, Higgs bundle, twistor space, Hochschild complex, Dold–Puppe, Maurer–Cartan equation.

MSC: Primary 14D20; Secondary 32G34, 32S35

Received: April 30, 2008

Language: English

DOI: 10.17323/1609-4514-2009-9-3-665-721



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024