RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2009 Volume 9, Number 4, Pages 801–821 (Mi mmj365)

This article is cited in 15 papers

Self-indexing energy function for Morse–Smale diffeomorphisms on 3-manifolds

V. Grinesa, F. Laudenbachb, O. Pochinkaa

a N. Novgorod State University, N. Novgorod, Russia
b Laboratoire de mathématiques Jean Leray, CNRS, Faculté des Sciences et Techniques, Université de Nantes, Nantes, France

Abstract: The paper is devoted to finding conditions for the existence of a self-indexing energy function for Morse–Smale diffeomorphisms on a 3-manifold $M^3$. These conditions involve how the stable and unstable manifolds of saddle points are embedded in the ambient manifold. We also show that the existence of a self-indexing energy function is equivalent to the existence of a Heegaard splitting of $M^3$ of a special type with respect to the considered diffeomorphism.

Key words and phrases: Morse–Smale diffeomorphism, Morse–Lyapunov function, Heegaard splitting.

MSC: 37B25, 37D15, 57M30

Received: April 9, 2008

Language: English

DOI: 10.17323/1609-4514-2009-9-4-801-821



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024