RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2010 Volume 10, Number 2, Pages 285–316 (Mi mmj381)

This article is cited in 13 papers

Classification of Gorenstein toric Del Pezzo varieties in arbitrary dimension

Victor Batyrev, Dorothee Juny

Mathematisches Institut, Universität Tübingen, Tübingen, Germany

Abstract: An $n$-dimensional Gorenstein toric Fano variety $X$ is called Del Pezzo variety if the anticanonical class $-K_X$ is an $(n-1)$-multiple of a Cartier divisor. Our purpose is to give a complete biregular classfication of Gorenstein toric Del Pezzo varieties in arbitrary dimension $n\ge2$. We show that up to isomorphism there exist exactly 37 Gorenstein toric Del Pezzo varieties of dimension $n$ which are not cones over $(n-1)$-dimensional Gorenstein toric Del Pezzo varieties. Our results are closely related to the classification of all Minkowski sum decompositions of reflexive polygons due to Emiris and Tsigaridas and to the classification up to deformation of $n$-dimensional almost Del Pezzo manifolds obtained by Jahnke and Peternell.

Key words and phrases: toric varieties, Fano varieties, lattice polytopes.

MSC: 14M25, 14J45, 52B20

Received: March 29, 2009

Language: English

DOI: 10.17323/1609-4514-2010-10-2-285-316



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025