RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2010 Volume 10, Number 2, Pages 377–397 (Mi mmj385)

On the continuous cohomology of diffeomorphism groups

M. V. Losik

Saratov State University, Saratov, Russia

Abstract: Suppose that $M$ is a connected orientable $n$-dimensional manifold and $m>2n$. If $H^i(M,\mathbb R)=0$ for $i>0$, it is proved that for each $m$ there is a monomorphism $H^m(W_n,O(n))\to H^m_\mathrm{cont}(\operatorname{Diff}M,\mathbb R)$. If $M$ is closed and oriented, it is proved that for each $m$ there is a monomorphism $H^m(W_n,O(n))\to H^{m-n}_\mathrm{cont}(\operatorname{Diff}_+M,\mathbb R)$, where $\operatorname{Diff}_+M$ is the group of orientation preserving diffeomorphisms of $M$.

Key words and phrases: diffeomorphism group, group cohomology, diagonal cohomology.

MSC: 22E41, 58D05, 57R32, 22E65, 17B66

Received: May 25, 2009

Language: English

DOI: 10.17323/1609-4514-2010-10-2-377-397



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025