RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2011 Volume 11, Number 3, Pages 463–472 (Mi mmj427)

This article is cited in 2 papers

Monodromy of dual invertible polynomials

W. Ebelinga, S. M. Gusein-Zadeb

a Leibniz Universität Hannover, Institut für Algebraische Geometrie, Hannover, Germany
b Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia

Abstract: A generalization of Arnold's strange duality to invertible polynomials in three variables by the first author and A. Takahashi includes the following relation. For some invertible polynomials $f$ the Saito dual of the reduced monodromy zeta function of $f$ coincides with a formal “root” of the reduced monodromy zeta function of its Berglund–Hübsch transpose $f^T$. Here we give a geometric interpretation of “roots” of the monodromy zeta function and generalize the above relation to all non-degenerate invertible polynomials in three variables and to some polynomials in an arbitrary number of variables in a form including “roots” of the monodromy zeta functions both of $f$ and $f^T$.

Key words and phrases: invertible polynomials, monodromy, zeta functions, Saito duality.

MSC: 32S05, 32S40, 14J33

Received: September 9, 2010

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025