RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2012 Volume 12, Number 1, Pages 37–48 (Mi mmj446)

This article is cited in 11 papers

A quaternionic treatment of the inhomogeneous $\operatorname{div}$-$\operatorname{rot}$ system

F. Colomboa, M. E. Luna-Elizarrarásb, I. Sabadinia, M. Shapirob, D. C. Struppac

a Dipartimento di Matematica, Politecnico di Milano, Milano
b Departamento de Matemáticas E.S.F.M. del I.P.N., México, México
c Schmid College of Science, Chapman University, Orange, California

Abstract: In this paper we study the inhomogeneous div-rot system ($\operatorname{div}\vec f=g_0$, $\operatorname{rot}\vec f=\vec g$) where the datum $(g_0,\vec g)$ consists of a continuous scalar and a continuous vector field, respectively. We embed the system in its appropriate quaternionic setting, and by using the right inverse of the Moisil–Teodorescu operator, we provide a necessary and sufficient condition for the solvability of the system and we describe its general solution. As a byproduct we obtain an explicit integral expression for the right inverse for the operators $\operatorname{div}$ and $\operatorname{rot}$. Finally, we show how the same problem could have been studied using algebraic analysis, and we use this different approach to obtain some additional results.

Key words and phrases: $\operatorname{div}$-$\operatorname{rot}$ system, right inverse operator, algebraic analysis, cohomology vanishing.

MSC: 47F05, 47G10, 35F05

Received: August 11, 2010

Language: English

DOI: 10.17323/1609-4514-2012-12-1-37-48



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025