RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2012 Volume 12, Number 1, Pages 49–54 (Mi mmj447)

This article is cited in 6 papers

Orbifold Euler characteristics for dual invertible polynomials

Wolfgang Ebelinga, Sabir M. Gusein-Zadeb

a Leibniz Universität Hannover, Institut für Algebraische Geometrie, Hannover, Germany
b Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia

Abstract: To construct mirror symmetric Landau–Ginzburg models, P. Berglund, T. Hübsch and M. Henningson considered a pair $(f,G)$ consisting of an invertible polynomial $f$ and an abelian group $G$ of its symmetries together with a dual pair $(\widetilde f,\widetilde G)$. Here we study the reduced orbifold Euler characteristics of the Milnor fibres of $f$ and $\widetilde f$ with the actions of the groups $G$ and $\widetilde G$ respectively and show that they coincide up to a sign.

Key words and phrases: invertible polynomials, group actions, orbifold Euler characteristic.

MSC: 14J33, 32S55, 57R18

Received: September 11, 2010

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025