RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2012 Volume 12, Number 3, Pages 605–620 (Mi mmj460)

This article is cited in 21 papers

The cascade of orthogonal roots and the coadjoint structure of the nilradical of a Borel subgroup of a semisimple Lie group

Bertram Kostant

Department of Mathematics, M.I.T., Cambridge, MA 02139

Abstract: Let $G$ be a semisimple Lie group and let $\mathfrak{g}= \mathfrak{n}_- + \mathfrak{h} +\mathfrak{n}$ be a triangular decomposition of $\mathfrak{g}= \hbox{Lie}\,G$. Let $\mathfrak{b} = \mathfrak{h} +\mathfrak{n}$ and let $H,N,B$ be Lie subgroups of $G$ corresponding respectively to $\mathfrak{h}$, $\mathfrak{n}$ and $\mathfrak{b}$. We may identify $\mathfrak{n}_-$ with the dual space to $\mathfrak{n}$. The coadjoint action of $N$ on $\mathfrak{n}_-$ extends to an action of $B$ on $\mathfrak{n}_-$. There exists a unique nonempty Zariski open orbit $X$ of $B$ on $\mathfrak{n}_-$. Any $N$-orbit in $X$ is a maximal coadjoint orbit of $N$ in $\mathfrak{n}_-$. The cascade of orthogonal roots defines a cross-section $\mathfrak{r}_-^{\times}$ of the set of such orbits leading to a decomposition
$$X = N/R\times \mathfrak{r}_-^{\times}.$$
This decomposition, among other things, establishes the structure of $S(\mathfrak{n})^{\mathfrak{n}}$ as a polynomial ring generated by the prime polynomials of $H$-weight vectors in $S(\mathfrak{n})^{\mathfrak{n}}$. It also leads to the multiplicity 1 of $H$ weights in $S(\mathfrak{n})^{\mathfrak{n}}$.

Key words and phrases: Cascade of orthogonal roots, Borel subgroups, nilpotent coadjoint action.

MSC: 20C, 14L24

Received: February 1, 2011

Language: English

DOI: 10.17323/1609-4514-2012-12-3-605-620



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024