RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2012 Volume 12, Number 2, Pages 435–455 (Mi mmj474)

This article is cited in 10 papers

KAM theory for lower dimensional tori within the reversible context 2

Mikhail B. Sevryuk

Institute of Energy Problems of Chemical Physics, The Russia Academy of Sciences, Leninskiĭ prospect 38, Bldg. 2, Moscow 119334, Russia

Abstract: The reversible context 2 in KAM theory refers to the situation where $\mathrm{dim}\,\mathrm{Fix}\, G<\frac{1}{2}\mathrm{codim}\,\mathcal{T}$, here $\mathrm{Fix}\, G$ is the fixed point manifold of the reversing involution $G$ and $\mathcal{T}$ is the invariant torus one deals with. Up to now, the persistence of invariant tori in the reversible context 2 has been only explored in the extreme particular case where $\mathrm{dim}\,\mathrm{Fix}\,G=0$ [M. B. Sevryuk, Regul. Chaotic Dyn. 16 (2011), no. 1–2, 24–38]. We obtain a KAM-type result for the reversible context 2 in the general situation where the dimension of $\mathrm{Fix}\, G$ is arbitrary. As in the case where $\mathrm{dim}\,\mathrm{Fix}\, G=0$, the main technical tool is J. Moser's modifying terms theorem of 1967.

Key words and phrases: KAM theory, Moser's modifying terms theorem, reversible systems, reversible context 2, fixed point manifold, lower dimensional invariant torus.

MSC: 70K43, 70H33

Received: August 24, 2011

Language: English

DOI: 10.17323/1609-4514-2012-12-2-435-455



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024