RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2012 Volume 12, Number 4, Pages 705–717 (Mi mmj477)

This article is cited in 1 paper

On products of skew rotations

M. D. Arnoldab, E. I. Dinaburgac, G. B. Dobrushinaa, S. A. Pirogova, A. N. Rybkoa

a Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Bolshoi Karetny per. 19, Moscow, 127994, Russia
b International Institute of Earthquake Prediction Theory and Mathematical Geophysics of the Russian Academy of Sciences, Profsoyuznaya str., 84/32, Moscow, 117997, Russia
c Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences, B. Gruzinskaya str., 10, Moscow, 123995, Russia

Abstract: Let $\{S_1^t\},\ldots,\{S_n^t\}$ be the one-parametric groups of shifts along the orbits of Hamiltonian systems generated by time-independent Hamiltonians $H_1,\ldots, H_n$ with one degree of freedom. In some problems of population genetics there appear planar transformations having the form $S^{h_n}_n\cdots S_1^{h_1}$ under some conditions on Hamiltonians $H_1,\ldots,H_n$. In this paper we study asymptotical properties of trajectories of such transformations. We show that under classical non-degeneracy condition on the Hamiltonians the trajectories stay in the invariant annuli for generic combinations of lengths $h_1,\dots, h_n$, while for the special case $h_1+\dots+h_n=0$ there exists a trajectory escaping to infinity.

Key words and phrases: KAM theory, Hamiltonian systems.

MSC: 37J40, 37J15, 37M05

Received: July 13, 2011

Language: English

DOI: 10.17323/1609-4514-2012-12-4-705-717



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025