RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2002 Volume 2, Number 1, Pages 113–126 (Mi mmj48)

This article is cited in 5 papers

The dual horospherical Radon transform for polynomials

J. Hilgerta, A. Pasqualea, È. B. Vinbergb

a Institut für Mathematik, Technische Universität Clausthal
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: Let $X=G/K$ be a semisimple symmetric space of non-compact type. A horosphere in $X$ is an orbit of a maximal unipotent subgroup of $G$. The set $\operatorname{Hor}X$ of all horospheres is a homogeneous space of $G$. The horospherical Radom transform suggested by I. M. Gelfand and M. I. Graev in 1959 takes any function $\varphi$ on $X$ to a function on $\operatorname{Hor}X$ obtained by integrating $\varphi$ over horospheres. We explicitly describe the dual transform in terms of its action on polynomial functions on $\operatorname{Hor}X$.

Key words and phrases: Symmetric space, horosphere, Radon transform, Harish–Chandra $\mathbf c$-function.

MSC: 14M17, 53C65, 22E45, 43A90

Received: August 24, 2001; in revised form November 14, 2001

Language: English

DOI: 10.17323/1609-4514-2002-2-1-113-126



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024