RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2013 Volume 13, Number 2, Pages 281–313 (Mi mmj498)

This article is cited in 17 papers

Bernstein–Gelfand–Gelfand reciprocity and indecomposable projective modules for classical algebraic supergroups

Caroline Grusona, Vera Serganovab

a Université de Lorraine, U.M.R. 7502 du CNRS, Institut Elie Cartan, 54506 Vandoeuvre-les-Nancy Cedex, France
b Department of Mathematics, University of California, Berkeley, CA, 94720-3840 USA

Abstract: We prove a BGG type reciprocity law for the category of finite dimensional modules over algebraic supergroups satisfying certain conditions. The equivalent of a standard module in this case is a virtual module called Euler characteristic due to its geometric interpretation. In the orthosymplectic case, we also describe indecomposable projective modules in terms of those Euler characteristics.

Key words and phrases: finite dimensional representations of algebraic supergroups, flag variety, BGG reciprocity law.

MSC: 17B20

Received: July 15, 2011; in revised form April 24, 2012

Language: English

DOI: 10.17323/1609-4514-2013-13-2-281-313



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024