RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2008 Volume 8, Number 1, Pages 91–109 (Mi mmj5)

This article is cited in 9 papers

On representations of the affine superalgebra $\mathbb q(n)^{(2)}$

M. Gorelika, V. V. Serganovab

a Weizmann Institute of Science
b University of California, Berkeley

Abstract: In this paper we study highest weight representations of the affine Lie superalgebra $\mathbb q(n)^{(2)}$. We prove that any Verma module over this algebra is reducible and calculate the character of an irreducible $\mathbb q(n)^{(2)}$-module with a generic highest weight. This formula is analogous to the Kac–Kazhdan formula for generic irreducible modules over affine Lie algebras at the critical level.

Key words and phrases: Affine Lie superalgebra, highest weight representation, Shapovalov form.

MSC: 32S50

Received: October 2, 2006

Language: English

DOI: 10.17323/1609-4514-2008-8-1-91-109



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024