RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2013 Volume 13, Number 4, Pages 667–691 (Mi mmj510)

This article is cited in 3 papers

Transitive families of transformations

Péter T. Nagya, Karl Strambachb

a Institute of Applied Mathematics, Óbuda University, H-1034 Budapest, Bécsiút 96/b, Hungary
b Department Mathematik, Universität Erlangen-Nürnberg, Kauerstr. 11, 91058 Erlangen, Germany

Abstract: In the first part of the paper we model an abstract version of Sabinin's theory on transitive families $\mathcal S$ of diffeomorphisms on a differentiable manifold, in particular we define an abstract holonomy group. In the second part we determine the linear connection associated with a smooth family $\mathcal S$ and clarify the relations between it and the properties of $\mathcal S$. Moreover, we prove that all natural holonomy groups are isomorphic, if $\mathcal S$ is a geodesic system. Finally we show that the group $\mathcal A$ of smooth automorphisms of $\mathcal S$ is a Lie subgroup of the group of affine transformation of the underlying manifold of $\mathcal S$; if $\mathcal A$ acts transitively we enlighten how $\mathcal A$ influences the algebraic as well as the differential geometric properties of $\mathcal S$.

Key words and phrases: transitive system of transformations, isotopism, holonomy group, homogeneous space.

MSC: 20N05, 20B99, 22F50, 20N10

Language: English

DOI: 10.17323/1609-4514-2013-13-4-667-691



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024