RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2014 Volume 14, Number 2, Pages 181–203 (Mi mmj519)

This article is cited in 11 papers

Generic fast diffusion for a class of non-convex Hamiltonians with two degrees of freedom

Abed Bounemouraa, Vadim Kaloshinb

a Université Paris Dauphine, CEREMADE, Place du Marchal de Lattre de Tassigny
b Department of Mathematics, University of Maryland, College Park, MD, 20817

Abstract: In this paper, we study small perturbations of a class of non-convex integrable Hamiltonians with two degrees of freedom, and we prove a result of diffusion for an open and dense set of perturbations, with an optimal time of diffusion which grows linearly with respect to the inverse of the size of the perturbation.

Key words and phrases: Arnold diffusion, linear diffusion, superconductivity channels, Nekhoroshev theory, convexity, resonant normal forms.

MSC: 37J40

Received: June 27, 2013; in revised form November 8, 2013

Language: English

DOI: 10.17323/1609-4514-2014-14-2-181-203



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025