RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2015 Volume 15, Number 3, Pages 425–433 (Mi mmj569)

This article is cited in 3 papers

Lower bounds on the number of rational points of Jacobians over finite fields and application to algebraic function fields in towers

S. Balleta, R. Rollanda, S. Tutdereb

a Aix-Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373, 13453 Marseille, France, case 907, 163 Avenue de Luminy, 13288 Marseille Cedex 9
b Department of Mathematics, Gebze Institute of Technology, Gebze, Kocaeli, Turkey

Abstract: We give effective bounds on the class number of any algebraic function field of genus $g$ defined over a finite field. These bounds depend on the possibly partial information on the number of places on each degree $r\leq g$. Such bounds are especially useful for estimating the class numbers of function fields in towers of function fields over finite fields having several positive Tsfasman–Vlăduţ invariants.

Key words and phrases: finite field, Jacobian, algebraic function field, class number, tower.

MSC: Primary 14H05; Secondary 12E20

Received: April 12, 2013; in revised form May 12, 2014

Language: English

DOI: 10.17323/1609-4514-2015-15-3-425-433



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025