RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2015 Volume 15, Number 3, Pages 455–495 (Mi mmj571)

This article is cited in 13 papers

Nodal domains in the square – the Neumann case

Bernard Helfferab, Mikael Persson Sundqvistc

a Laboratoire Jean Leray, Université de Nantes, France
b Laboratoire de Mathématiques UMR CNRS 8628, Université Paris-Sud-Bât 425, F-91405 Orsay Cedex, France
c Lund University, Department of Mathematical Sciences, Lund, Sweden

Abstract: Å. Pleijel has proved that in the case of the Laplacian on the square with Neumann condition, the equality in the Courant nodal theorem (Courant sharp situation) can only be true for a finite number of eigenvalues. We identify five Courant sharp eigenvalues for the Neumann Laplacian in the square, and prove that there are no other cases.

Key words and phrases: nodal domains, Courant theorem, square, Neumann.

MSC: 35B05, 35P20, 58J50

Received: November 28, 2014; in revised form March 4, 2015

Language: English

DOI: 10.17323/1609-4514-2015-15-3-455-495



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025