RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2017 Volume 17, Number 2, Pages 291–321 (Mi mmj638)

This article is cited in 3 papers

Deformations of the Hilbert scheme of points on a del Pezzo surface

Chunyi Li

School of Mathematics and Maxwell Institute, University of Edinburgh

Abstract: Let $S$ be a smooth del Pezzo surface over $\mathbb C$ of degree $d$ and $\mathrm{Hilb}^nS$ be the Hilbert scheme that parameterizes $0$-dimensional subschemes of length $n$. In this paper, we construct a flat family of deformations of $\mathrm{Hilb}^nS$ which can be conceptually understood as the Hilbert scheme of deformed non-commutative del Pezzo surfaces. Further we show that each deformed $\mathrm{Hilb}^nS$ carries a generically symplectic holomorphic Poisson structure. Moreover, the generic deformation of $\mathrm{Hilb}^nS$ has an $(11-d)$-dimensional moduli space and each of the fibers is of the form that we construct.

Key words and phrases: Hilbert scheme, exceptional collection, geometric invariant theory, holomorphic Poisson structure.

MSC: 14D20, 16E35

Received: July 29, 2014; in revised form January 20, 2016

Language: English

DOI: 10.17323/1609-4514-2017-17-2-291-321



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024