RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2002 Volume 2, Number 3, Pages 567–588 (Mi mmj64)

This article is cited in 32 papers

$q$-characters of the tensor products in $\mathbf{sl}_2$-case

B. L. Feigina, E. B. Feiginb

a L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences
b Independent University of Moscow

Abstract: Let $\pi,\dots,\pi_n$ be irreducible finite-dimensional $\mathbf{sl}_2$-modules. Using the theory of representations of current algebras, we introduce several ways to construct a $q$-grading on $\pi_1\otimes\dots\otimes\pi_n$. We study the corresponding graded modules and prove that they are essentially the same.

Key words and phrases: Universal enveloping algebra, representation theory, current algebra, Gordon's formula.

MSC: Primary 05A30; Secondary 17B35

Received: April 14, 2002

Language: English

DOI: 10.17323/1609-4514-2002-2-3-567-588



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025