RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2017 Volume 17, Number 3, Pages 357–369 (Mi mmj641)

This article is cited in 1 paper

Filling gaps of the symmetric crosscap spectrum

A. Baceloa, J. J. Etayoa, E. Martínezb

a Departamento de Álgebra, Facultad de Matemáticas, Universidad Complutense, 28040-Madrid, SPAIN
b Departamento de Matemáticas Fundamentales, UNED, Paseo Senda del Rey 9, 28040-Madrid, SPAIN

Abstract: Every finite group $G$ acts faithfully on some non-orientable unbordered surfaces. The minimal topological genus of those surfaces is called the symmetric crosscap number of $G$. It is known that $3$ is not the symmetric crosscap number of any group but it remains unknown whether there are other such values, called gaps.
In this paper we obtain necessary conditions for $n$ to be a gap. According to them, the smallest value of $n$ which could be a gap is in this moment $n=699$, and there remain eight possible candidates for $n<2000$.

Key words and phrases: Klein surfaces, automorphism groups, symmetric crosscap number.

MSC: Primary 57M60; Secondary 20F05, 20H10, 30F50

Received: April 11, 2016; in revised form June 21, 2017

Language: English

DOI: 10.17323/1609-4514-2017-17-3-357-369



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024