RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2017 Volume 17, Number 4, Pages 691–698 (Mi mmj653)

This article is cited in 3 papers

Permutation-equivariant quantum K-theory I. Definitions. Elementary K-theory of $\overline M_{0,n}/S_n$

Alexander Givental

Department of Mathematics, University of California Berkeley, Berkeley CA 94720, USA

Abstract: K-theoretic Gromov–Witten (GW) invariants of a compact Kähler manifold $X$ are defined as super-dimensions of sheaf cohomology of interesting bundles over moduli spaces of $n$-pointed holomorphic curves in $X$. In this paper, we introduce K-theoretic GW-invariants cognizant of the $S_n$-module structure on the sheaf cohomology, induced by renumbering of the marked points, and compute some of these invariants for $X=\mathrm{pt}$.

Key words and phrases: K-theory, Gromov–Witten invariants, Schur–Weyl reciprocity, Deligne–Mumford spaces, Veronese curves.

MSC: 14N35

Language: English

DOI: 10.17323/1609-4514-2017-17-4-691-698



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024