RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2017 Volume 17, Number 4, Pages 757–786 (Mi mmj657)

This article is cited in 20 papers

Persistence modules with operators in Morse and Floer theory

Leonid Polterovicha, Egor Shelukhinbc, Vukašin Stojisavljevića

a School of Mathematical Sciences, Tel Aviv University
b IAS, Princeton
c DMS at U. of Montreal

Abstract: We introduce a new notion of persistence modules endowed with operators. It encapsulates the additional structure on Floer-type persistence modules coming from the intersection product with classes in the ambient (quantum) homology, along with a few other geometric situations. We provide sample applications to the $C^0$-geometry of Morse functions and to Hofer's geometry of Hamiltonian diffeomorphisms that go beyond spectral invariants and traditional persistent homology.

Key words and phrases: symplectic manifold, Hamiltonian diffeomorphism, Floer homology, persistence module, barcode.

MSC: Primary 53D40; Secondary 58E05

Language: English

DOI: 10.17323/1609-4514-2017-17-4-757-786



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024