RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2018 Volume 18, Number 1, Pages 149–162 (Mi mmj666)

This article is cited in 2 papers

A spectral sequence for homology of invariant group chains

Rolando Jimeneza, Angelina López Madrigala, Quitzeh Morales Meléndezb

a Instituto de Matemáticas, Unidad Oaxaca, Universidad Nacional Autónoma de México, León 2, 68000 Oaxaca de Juárez, Oaxaca, México
b CONACYT — Universidad Pedagógica Nacional, unidad 201 Camino a la Zanjita S/N, Col. Noche Buena, Santa Cruz Xoxocotlán, Oaxaca. C.P. 71230

Abstract: Let $Q$ be a finite group acting on a group $G$ by group automorphisms, $C(G)$ the bar complex and $H^Q_*(G,A)$ the homology of invariant group chains defined in K. Knudson's paper “The homology of invariant group chains”. In this paper we construct a spectral sequence converging to $H_*(Q,C(G)\otimes A)$ whose second term is isomorphic to $H^Q_*(G,A)$ for some coefficients. When this spectral sequence collapses this yields an isomorphism $H^Q_*(G,A)\cong H_*(Q,C(G)\otimes A)$, which we use to compute this homology for some cases. The construction uses a decomposition of the bar complex $C_*(G) $ in terms of the induction from some isotropy groups to the group $Q$. We also decompose the subcomplex of invariants $C_*(G)^Q$ by $Q$-orbits and use this to compute the invariant $1$-homology $H^Q_1(G,\mathbb Z)$ for some cases.

Key words and phrases: bar complex, homology of invariant group chains, spectral sequences.

MSC: Primary 55N25, 55T05; Secondary 18G40, 18G35

Language: English

DOI: 10.17323/1609-4514-2018-18-1-149-162



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024