RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2018 Volume 18, Number 2, Pages 193–204 (Mi mmj670)

This article is cited in 2 papers

On the characteristic foliation on a smooth hypersurface in a holomorphic symplectic fourfold

E. Amerikab, L. Gusevaa

a National Research University Higher School of Economics, Laboratory of Algebraic Geometry and Applications, Usacheva 6, 119048 Moscow, Russia
b Université Paris-Sud, Laboratoire de Mathématiques d'Orsay, Campus Scientifique d'Orsay, Bât. 307, 91405 Orsay, France

Abstract: Let $X$ be an irreducible holomorphic symplectic fourfold and $D$ a smooth hypersurface in $X$. It follows from a result by E. Amerik and F. Campana that the characteristic foliation (that is the foliation given by the kernel of the restriction of the symplectic form to $D$) is not algebraic unless $D$ is uniruled. Suppose now that the Zariski closure of its general leaf is a surface. We prove that $X$ has a lagrangian fibration and $D$ is the inverse image of a curve on its base.

Key words and phrases: holomorphic symplectic manifolds, foliations, elliptic surfaces.

MSC: 14D06, 14D15, 37F75

Language: English

DOI: 10.17323/1609-4514-2018-18-2-193-204



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025