RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2018 Volume 18, Number 2, Pages 205–210 (Mi mmj671)

This article is cited in 1 paper

A short note on cohomological dimension

Kamal Bahmanpourab, Jafar A'zamia, Ghader Ghasemia

a Faculty of Sciences, Department of Mathematics, University of Mohaghegh Ardabili, 56199-11367, Ardabil, Iran
b School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box. 19395-5746, Tehran, Iran

Abstract: Let $(R,\mathfrak m)$ be a Noehterian regular local ring and $\mathfrak p$ be a prime ideal of $R$. In this paper it is shown that if the set $S:=\{n\in\mathbb N\colon R/\mathfrak p^{(n)}\ \text{is Cohen--Macaulay}\}$ is infinite, then $\mathrm{cd}(\mathfrak p,R)=\mathrm{height}(\mathfrak p)$.

Key words and phrases: cohomological dimension, Krull dimension, local cohomology, regular ring, symbolic power.

MSC: 13D45, 14B15, 13E05

Language: English

DOI: 10.17323/1609-4514-2018-18-2-205-210



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024