RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2018 Volume 18, Number 2, Pages 367–386 (Mi mmj676)

This article is cited in 4 papers

Bounding the length of iterated integrals of the first nonzero Melnikov function

Pavao Mardešića, Dmitry Novikovb, Laura Ortiz-Bobadillac, Jessie Pontigo-Herrerab

a Université de Bourgogne, Institute de Mathématiques de Bourgogne — UMR 5584 CNRS, Université de Bourgogne, 9 avenue Alain Savary, BP 47870, 21078 Dijon, FRANCE
b Faculty of Mathematics and Computer Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
c Instituto de Matemáticas, Universidad Nacional Autónoma de México (UNAM), Área de la Investigación Científica, Circuito exterior, Ciudad Universitaria, 04510, Ciudad de México, México

Abstract: We consider small polynomial deformations of integrable systems of the form $dF=0$, $F\in\mathbb C[x,y]$ and the first nonzero term $M_\mu$ of the displacement function $\Delta(t,\epsilon)=\sum_{i=\mu}M_i(t)\epsilon^i$ along a cycle $\gamma(t)\in F^{-1}(t)$. It is known that $M_\mu$ is an iterated integral of length at most $\mu$. The bound $\mu$ depends on the deformation of $dF$.
In this paper we give a universal bound for the length of the iterated integral expressing the first nonzero term $M_\mu$ depending only on the geometry of the unperturbed system $dF=0$. The result generalizes the result of Gavrilov and Iliev providing a sufficient condition for $M_\mu$ to be given by an abelian integral, i.e., by an iterated integral of length $1$. We conjecture that our bound is optimal.

Key words and phrases: Hilbert 16th problem, center problem, Poincaré return map, abelian integrals, limit cycles, free group automorphism.

MSC: Primary 34C07; Secondary 34C05, 34C08

Language: English

DOI: 10.17323/1609-4514-2018-18-2-367-386



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024