RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2018 Volume 18, Number 3, Pages 437–472 (Mi mmj682)

This article is cited in 3 papers

On $M$-functions associated with modular forms

Philippe Lebacquea, Alexey Zykinbcde

a Laboratoire de Mathématiques de Besançon, UFR Sciences et techniques 16, route de Gray 25 030 Besançon, France
b Laboratoire GAATI, Université de la Polynésie française, BP 6570 – 98702 Faa'a, Tahiti, Polynésie française
c National Research University Higher School of Economics
d AG Laboratory NRU HSE
e Institute for Information Transmission Problems of the Russian Academy of Sciences

Abstract: Let $f$ be a primitive cusp form of weight $k$ and level $N$, let $\chi$ be a Dirichlet character of conductor coprime with $N$, and let $\mathfrak{L}(f\otimes \chi, s)$ denote either $\log L(f\otimes \chi, s)$ or $(L'/L)(f\otimes \chi, s)$. In this article we study the distribution of the values of $\mathfrak{L}$ when either $\chi$ or $f$ vary. First, for a quasi-character $\psi\colon \mathbb{C} \to \mathbb{C}^\times$ we find the limit for the average $\mathrm{Avg}_\chi \psi(L(f\otimes\chi, s))$, when $f$ is fixed and $\chi$ varies through the set of characters with prime conductor that tends to infinity. Second, we prove an equidistribution result for the values of $\mathfrak{L}(f\otimes \chi,s)$ by establishing analytic properties of the above limit function. Third, we study the limit of the harmonic average $\mathrm{Avg}^h_f \psi(L(f, s))$, when $f$ runs through the set of primitive cusp forms of given weight $k$ and level $N\to \infty$. Most of the results are obtained conditionally on the Generalized Riemann Hypothesis for $L(f\otimes\chi, s)$.

Key words and phrases: $L$-function, cuspidal newforms, value-distribution, density function.

MSC: Primary 11F11; Secondary 11M41

Language: English

DOI: 10.17323/1609-4514-2018-18-3-437-472



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024