RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2018 Volume 18, Number 4, Pages 693–719 (Mi mmj692)

Lagrangian subvarieties in the Chow ring of some hyperkähler varieties

Robert Laterveer

Institut de Recherche Mathématique Avancée, CNRS – Université de Strasbourg, 7 Rue René Descartes, 67084 Strasbourg CEDEX, FRANCE

Abstract: Let $X$ be a hyperkähler variety, and let $Z\subset X$ be a Lagrangian subvariety. Conjecturally, $Z$ should have trivial intersection with certain parts of the Chow ring of $X$. We prove this conjecture for certain Hilbert schemes $X$ having a Lagrangian fibration, and $Z\subset X$ a general fibre of the Lagrangian fibration.

Key words and phrases: Algebraic cycles, Chow ring, motives, Bloch–Beilinson filtration, hyperkähler variety, Lagrangian subvariety, constant cycle subvariety, (Hilbert scheme of) $K3$ surface, Beauville's splitting property, multiplicative Chow–Künneth decomposition, spread of algebraic cycles.

MSC: 14C15, 14C25, 14C30

Language: English

DOI: 10.17323/1609-4514-2018-18-4-693-719



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024