RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2019 Volume 19, Number 1, Pages 7–36 (Mi mmj698)

This article is cited in 5 papers

Lattice birth-and-death processes

Viktor Bezborodov, Yuri Kondratiev, Oleksandr Kutoviy

Fakultät für Mathematik, Universität Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany

Abstract: Lattice birth-and-death Markov dynamics of particle systems with spins from $\mathbb{Z} _+$ are constructed as unique solutions to certain stochastic equations. Pathwise uniqueness, strong existence, Markov property and joint uniqueness in law are proven, and a martingale characterization of the process is given. Sufficient conditions for the existence of an invariant distribution are formulated in terms of Lyapunov functions. We apply obtained results to discrete analogs of the Bolker–Pacala–Dieckmann–Law model and an aggregation model.

Key words and phrases: birth-death process, interacting particle systems, stochastic equation with Poisson noise, martingale problem, invariant measure, Bolker–Pacala model.

MSC: 60K35, 82C22

DOI: 10.17323/1609-4514-2019-19-1-7-36



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024