RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2003 Volume 3, Number 1, Pages 63–84 (Mi mmj76)

This article is cited in 12 papers

Non-existence of global solutions for higher-order evolution inequalities in unbounded cone-like domains

G. G. Laptev

Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: We use the test function method developed by Mitidieri and Pohozaev to get a priori estimates and non-existence results for semi-linear “higher-order evolution inequalities” in unbounded cone-like domains. As a model we consider the problem in a cone K with the positive initial-boundary conditions
$$ \frac{\partial^ku}{\partial t^k}-\Delta u\ge|u|^q, \quad k=1,2,\dots; \quad u_{|\partial K\times[0,\infty)}\ge0, \quad \frac{\partial^{k-1}u}{\partial t^{k-1}}\biggl|_{t=0}\ge0, $$
where $\Delta$ denotes the Laplace operator.

Key words and phrases: Blow-up, partial differential inequalities, non-existence cone, cone-like domain.

MSC: Primary 35G25; Secondary 35R45, 35K55, 35L70

Received: April 10, 2002

Language: English

DOI: 10.17323/1609-4514-2003-3-1-63-84



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025