RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2020 Volume 20, Number 2, Pages 217–256 (Mi mmj763)

This article is cited in 1 paper

Homogeneous symplectic $4$-manifolds and finite dimensional Lie algebras of symplectic vector fields on the symplectic $4$-space

D. V. Alekseevskyab, A. Santic

a A. A. Kharkevich Institute for Information Transmission Problems, B. Karetnyi per. 19, 127051, Moscow, Russia
b University of Hradec Králové, Faculty of Science, Rokitanského 62, 50003 Hradec Králové, Czech Republic
c Dipartimento di Matematica, Università  di Bologna, Piazza di Porta San Donato 5, 40126, Bologna, Italy

Abstract: We classify the finite type (in the sense of E. Cartan theory of prolongations) subalgebras $\mathfrak h\subset\mathfrak{sp}(V)$, where $V$ is the symplectic $4$-dimensional space, and show that they satisfy $\mathfrak h^{(k)}=0$ for all $k>0$. Using this result, we reduce the problem of classification of graded transitive finite-dimensional Lie algebras $\mathfrak g$ of symplectic vector fields on $V$ to the description of graded transitive finite-dimensional subalgebras of the full prolongations $\mathfrak{p}_1^{(\infty)}$ and $\mathfrak{p}_2^{(\infty)}$, where $\mathfrak{p}_1$ and $\mathfrak{p}_2$ are the maximal parabolic subalgebras of $\mathfrak{sp}(V)$. We then classify all such $\mathfrak{g}\subset\mathfrak{p}_i^{(\infty)}$, $i=1,2$, under some assumptions, and describe the associated $4$-dimensional homogeneous symplectic manifolds $(M = G/K, \omega)$. We prove that any reductive homogeneous symplectic manifold (of any dimension) admits an invariant torsion free symplectic connection, i.e., it is a homogeneous Fedosov manifold, and give conditions for the uniqueness of the Fedosov structure. Finally, we show that any nilpotent symplectic Lie group (of any dimension) admits a natural invariant Fedosov structure which is Ricci-flat.

Key words and phrases: homogeneous symplectic manifold, Lie algebra of symplectic vector fields, E. Cartan's prolongation, homogeneous Fedosov manifold.

MSC: 53D05, 53C30, 17B66, 53C05

Language: English

DOI: 10.17323/1609-4514-2020-20-2-217-256



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025