RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2020 Volume 20, Number 2, Pages 405–422 (Mi mmj770)

This article is cited in 1 paper

On the topology of rational $\mathbb{T}$-varieties of complexity one

Antonio Lafacea, Alvaro Liendob, Joaquín Moragac

a Departamento de Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile
b Instituto de Matemática y Física, Universidad de Talca, Casilla 721, Talca, Chile
c Department of Mathematics, University of Utah, 155 S 1400 E, Salt Lake City, UT 84112

Abstract: We generalize classical results about the topology of toric varieties to the case of projective $\mathbb{Q}$-factorial $\mathbb{T}$-varieties of complexity one using the language of divisorial fans. We describe the Hodge–Deligne polynomial in the smooth case, the cohomology ring and the Chow ring in the contraction-free case.

Key words and phrases: t-varieties, Hodge–Deligne polynomials, torus actions, Chow rings, topology of T-varieties.

MSC: 14C15, 14L30, 14M25

Language: English

DOI: 10.17323/1609-4514-2020-20-2-405-422



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025