RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2021 Volume 21, Number 2, Pages 271–286 (Mi mmj793)

This article is cited in 1 paper

Integrable deformations of foliations: a generalization of Ilyashenko's result

Dominique Cerveaua, Bruno Scárduab

a Université de Rennes / CNRS-IRMAR-UMR 6625, F 35000-Rennes, France
b Inst. Matemática, Universidade Federal do Rio de Janeiro. 68530, Rio de Janeiro-RJ, 21.945-970 Brazil

Abstract: We study analytic deformations of holomorphic differential 1-forms. The initial 1-form is exact homogeneous and the deformation is by polynomial integrable 1-forms. We investigate under which conditions the elements of the deformation are still exact or, more generally, exhibit a first integral. Our results are related to natural extensions of classical results of Ilyashenko on limit cycles of perturbations of hamiltonian systems in two complex variables.

Key words and phrases: holomorphic foliation, integrable form, deformation.

MSC: Primary 37F75, 57R30; Secondary 32M25, 32S65

Language: English

DOI: 10.17323/1609-4514-2021-21-2-271-286



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024