RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2021 Volume 21, Number 2, Pages 383–399 (Mi mmj797)

This article is cited in 3 papers

Goldie ranks of primitive ideals and indexes of equivariant Azumaya algebras

I. Loseva, I. Paninb

a Department of Mathematics, Yale University, New Haven, CT, USA
b St. Petersburg branch of V.A. Steklov Mathematical Institute, St. Petersburg, Russian Federation

Abstract: Let $\mathfrak{g}$ be a semisimple Lie algebra. We establish a new relation between the Goldie rank of a primitive ideal $\mathcal{J}\subset U(\mathfrak{g})$ and the dimension of the corresponding irreducible representation $V$ of an appropriate finite $\mathrm{W}$-algebra. Namely, we show that $\operatorname{Grk}(\mathcal{J}) \leqslant \dim V/d_V$, where $d_V$ is the index of a suitable equivariant Azumaya algebra on a homogeneous space. We also compute $d_V$ in representation theoretic terms.

Key words and phrases: azumaya algebras, index, primitive ideals, Goldie ranks, W-algebras.

MSC: 17B35, 16H99

Language: English

DOI: 10.17323/1609-4514-2021-21-2-383-399



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024