Abstract:
Let $\mathfrak{g}$ be a semisimple Lie algebra. We establish a new relation between the Goldie rank of a primitive ideal $\mathcal{J}\subset U(\mathfrak{g})$ and the dimension of the corresponding irreducible representation $V$ of an appropriate finite $\mathrm{W}$-algebra. Namely, we show that $\operatorname{Grk}(\mathcal{J}) \leqslant \dim V/d_V$, where $d_V$ is the index of a suitable equivariant Azumaya algebra on a homogeneous space. We also compute $d_V$ in representation theoretic terms.
Key words and phrases:azumaya algebras, index, primitive ideals, Goldie ranks, W-algebras.