This article is cited in
6 papers
Deligne categories and the periplectic Lie superalgebra
Inna Entova-Aizenbuda,
Vera Serganovab a Dept. of Mathematics, Ben Gurion University, Beer-Sheva, Israel
b Dept. of Mathematics, University of California at Berkeley, Berkeley, CA 94720
Abstract:
We study stabilization of finite-dimensional representations of the periplectic Lie superalgebras
$\mathfrak{p}(n)$ as
$n \to \infty$.
The paper gives a construction of the tensor category
$\mathrm{Rep}(\underline{P})$, possessing nice universal properties among tensor categories over the category
$\mathrm{sVect}$ of finite-dimensional complex vector superspaces.
First, it is the “abelian envelope” of the Deligne category corresponding to the periplectic Lie superalgebra.
Secondly, given a tensor category
$\mathcal{C}$ over
$\mathrm{sVect}$, exact tensor functors $\mathrm{Rep}(\underline{P})\rightarrow \mathcal{C}$ classify pairs
$(X, \omega)$ in
$\mathcal{C}$, where
$\omega\colon X \otimes X \to \Pi1$ is a non-degenerate symmetric form and
$X$ not annihilated by any Schur functor.
The category
$\mathrm{Rep}(\underline{P})$ is constructed in two ways. The first construction is through an explicit limit of the tensor categories
$\mathrm{Rep}(\mathfrak{p}(n))$ (
$n\geq 1$) under Duflo–Serganova functors. The second construction (inspired by P. Etingof) describes
$\mathrm{Rep}(\underline{P})$ as the category of representations of a periplectic Lie supergroup in the Deligne category $\mathrm{sVect} \boxtimes \mathrm{Rep}(\underline{\mathrm{GL}}_t)$.
Key words and phrases:
deligne categories, periplectic Lie superalgebra, tensor categories, stabilization in representation theory, Duflo–Serganova functor.
MSC: 17A70,
17B10,
17B20,
18D10
Language: English
DOI:
10.17323/1609-4514-2021-21-3-507-565