RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2022 Volume 22, Number 2, Pages 239–263 (Mi mmj827)

Deformations of polystable sheaves on surfaces: quadraticity implies formality

Ruggero Bandiera, Marco Manetti, Francesco Meazzini

Università degli studi di Roma La Sapienza, Dipartimento di Matematica “Guido Castelnuovo”, P.le Aldo Moro 5, I-00185 Roma, Italy

Abstract: We study relations between the quadraticity of the Kuranishi family of a coherent sheaf on a complex projective scheme and the formality of the DG-Lie algebra of its derived endomorphisms. In particular, we prove that for a polystable coherent sheaf of a smooth complex projective surface the DG-Lie algebra of derived endomorphisms is formal if and only if the Kuranishi family is quadratic.

Key words and phrases: deformation theory, polystable sheaves, formality, differential graded Lie algebras, $L_{\infty}$-algebras.

MSC: 14F08, 14D15, 16W50, 18N40

Language: English



© Steklov Math. Inst. of RAS, 2024