RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2022 Volume 22, Number 3, Pages 521–560 (Mi mmj836)

Combinatorial monomialization for generalized real analytic functions in three variables

Jesús Palma-Márquez

Instituto de Matemáticas, Universidad Nacional Autónoma de México (UNAM), Área de la Investigación Científica, Circuito exterior, Ciudad Universitaria, 04510, Mexico City, Mexico

Abstract: We prove that given a germ of a generalized real analytic function in three variables, there exists a finite sequence of global blowing-up morphisms such that the total transform of the initial germ is locally of monomial type with respect to the generalized variables.

Key words and phrases: combinatorial blowing-up morphism, combinatorial monomialization, generalized power series, linear representation of quivers, Newton polyhedron.

MSC: 14E15, 14M25, 30D60, 32C05, 32S45

Language: English



© Steklov Math. Inst. of RAS, 2024