RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2023 Volume 23, Number 4, Pages 591–624 (Mi mmj869)

Integrability of vector fields and meromorphic solutions

Julio C. Rebeloa, Helena Reisb

a Institut de Mathématiques de Toulouse; UMR 5219, Université de Toulouse, 118 Route de Narbonne, F-31062 Toulouse, France
b Centro de Matemática da Universidade do Porto, Faculdade de Economia da Universidade do Porto, Portugal

Abstract: Let $\mathcal F$ be a one-dimensional holomorphic foliation defined on a complex projective manifold and consider a meromorphic vector field $X$ tangent to $\mathcal F$. In this paper, we prove that if the set of integral curves of $X$ that are given by meromorphic maps defined on $\mathbb{C}$ is “large enough”, then the restriction of $\mathcal F$ to any invariant complex $2$-dimensional analytic set admits a first integral of Liouvillean type. In particular, on $\mathbb{C}^3$, every rational vector field whose solutions are meromorphic functions defined on $\mathbb{C}$ admits an invariant analytic set of dimension $2$ such that the restriction of the vector field to it yields a Liouville integrable foliation.

Key words and phrases: meromorphic solutions, Liouvillian first integral, foliated Poincaré metric, Riccati and turbulent foliations.

MSC: Primary 34M05, 37F75; Secondary 34A05

Language: English



© Steklov Math. Inst. of RAS, 2024