RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2003 Volume 3, Number 2, Pages 273–333 (Mi mmj89)

This article is cited in 8 papers

The combinatorial geometry of singularities and Arnold's series $E$$Z$$Q$

E. Brieskorn, A. M. Pratusevich, F. Rothenhäusler

University of Bonn, Institute for Applied Mathematics

Abstract: We consider discrete subgroups $\Gamma$ of the simply connected Lie group $\widetilde{\rm SU}(1,1)$ of finite level. This Lie group has the structure of a 3-dimensional Lorentz manifold coming from the Killing form. $\Gamma$ acts on $\widetilde{\rm SU}(1,1)$ by left translations. We want to describe the Lorentz space form $\Gamma\setminus\widetilde{\rm SU}(1,1)$ by constructing a fundamental domain $F$ for $\Gamma$. We want $F$ to be a polyhedron with totally geodesic faces. We construct such $F$ for all $\Gamma$ satisfying the following condition: The image $\overline\Gamma$ of $\Gamma$ in ${\rm PSU}(1,1)$ has a fixed point $u$ in the unit disk of order larger than the level of $\Gamma$. The construction depends on $\Gamma$ and $\Gamma u$.
For co-compact ${\rm\Gamma}$ the Lorentz space form $\Gamma\setminus\widetilde{\rm SU}(1,1)$ is the link of a quasi-homogeneous Gorenstein singularity. The quasi-homogeneous singularities of Arnold's series $E$$Z$$Q$ are of this type. We compute the fundamental domains for the corresponding group. They are represented by polyhedra in Lorentz 3-space shown on Tables 1–13. Each series exhibits a regular characteristic pattern of its combinatorial geometry related to classical uniform polyhedra.

Key words and phrases: Lorentz space form, polyhedral fundamental domain, quasihomogeneous singularity, Arnold singularity series.

MSC: Primary 53C50; Secondary 14J17, 20H10, 30F35, 30F60,32G15, 32S25, 51M20, 52

Language: English

DOI: 10.17323/1609-4514-2003-3-2-273-333



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024