RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2003 Volume 3, Number 2, Pages 397–418 (Mi mmj92)

This article is cited in 19 papers

On Cohen–Macaulay modules on surface singularities

Yu. A. Drozdab, G.-M. Greuelc, I. Kashubac

a National Taras Shevchenko University of Kyiv
b Max Planck Institute for Mathematics
c Technical University of Kaiserslautern

Abstract: We study Cohen–Macaulay modules over normal surface singularities. Using the method of Kahn and extending it to families of modules, we classify Cohen–Macaulay modules over cusp singularities and prove that a minimally elliptic singularity is Cohen–Macaulay tame if and only if it is either simple elliptic or cusp. As a corollary, we obtain a classification of Cohen–Macaulay modules over log-canonical surface singularities and hypersurface singularities of type ${\rm T}_{pqr}$ especially they are Cohen–Macaulay tame. We also calculate the Auslander–Reiten quiver of the category of Cohen–Macaulay modules in the considered cases.

Key words and phrases: Cohen–Macaulay modules, Cohen–Macaulay tame and wild rings, normal surface singularities, minimally elliptic singularities, cusp singularities, log-canonical singularities, hypersurface singularities, Auslander–Reiten quiver.

MSC: Primary 13C14, 13C05; Secondary 16G50, 14J17

Received: February 18, 2002

Language: English

DOI: 10.17323/1609-4514-2003-3-2-397-418



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024