RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2003 Volume 3, Number 2, Pages 457–473 (Mi mmj95)

This article is cited in 2 papers

Modular transformations of the elliptic hypergeometric functions, Macdonald polynomials, and the shift operator

G. Feldera, L. J. Stevensb, A. N. Varchenkob

a Departement für Mathematik, Eidgenösische Technische Hochschule Zürich
b Department of Mathematics, University of North Carolina at Chapel Hill

Abstract: We consider the space of elliptic hypergeometric functions of the $\mathfrak{sl}_2$ type associated with elliptic curves with one marked point. This space represents conformal blocks in the $\mathfrak{sl}_2$ WZW model of CFT. The modular group acts on this space. We give formulas for the matrices of the action in terms of values at roots of unity of Macdonald polynomials of the $\mathfrak{sl}_2$ type.

Key words and phrases: Elliptic hypergeometric functions, conformal blocks, Macdonald polynomials.

MSC: Primary 39Axx; Secondary 11Fxx, 20Gxx, 32G34, 33Dxx.

Received: October 2, 2002

Language: English

DOI: 10.17323/1609-4514-2003-3-2-457-473



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024