RUS  ENG
Full version
JOURNALS // Trudy Moskovskogo Matematicheskogo Obshchestva // Archive

Tr. Mosk. Mat. Obs., 2013 Volume 74, Issue 2, Pages 265–277 (Mi mmo548)

This article is cited in 16 papers

Homotopy BV algebras in Poisson geometry

C. Brauna, A. Lazarevb

a Centre for Mathematical Sciences, City University London, London, UK
b Departament of Mathematics and Statistics, Lancaster University, Lancaster, UK

Abstract: We define and study the degeneration property for $\mathrm{BV}_\infty$ algebras and show that it implies that the underlying $L_\infty$ algebras are homotopy abelian. The proof is based on a generalisation of the well- known identity $\Delta(e^\xi)=e^\xi\left(\Delta(\xi)+\frac12[\xi,\xi]\right)$ which holds in all BV algebras. As an application we show that the higher Koszul brackets on the cohomology of a manifold supplied with a generalised Poisson structure all vanish. References: 17 entries.

Key words and phrases: $L_\infty$ algebra, BV algebra, Poisson manifold, differential operator.

UDC: 512.66

MSC: 14D15, 16E45, 53D17

Received: 15.05.2013

Language: English


 English version:
Transactions of the Moscow Mathematical Society, 2013, 74, 217–227

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024