RUS  ENG
Full version
JOURNALS // Trudy Moskovskogo Matematicheskogo Obshchestva // Archive

Tr. Mosk. Mat. Obs., 2014 Volume 75, Issue 2, Pages 277–308 (Mi mmo567)

This article is cited in 5 papers

Necessary and sufficient condition for the stabilization of the solution of a mixed problem for nondivergence parabolic equations to zero

Yu. A. Alkhutova, V. N. Denisovb

a Vladimir State University
b M. V. Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics

Abstract: We consider the first boundary value problem in a cylindrical domain for a uniformly parabolic second-order equation in nondivergence form. The solution satisfies the homogeneous Dirichlet condition on the lateral surface of the cylinder, and the initial function is bounded. We show that if the coefficients of the equation satisfy the local and global Dini conditions, then a necessary and sufficient condition for the stabilization of the solution to zero coincides with a similar condition for the heat equation.

UDC: 517.956

MSC: 35K10

Received: 29.03.2014


 English version:
Transactions of the Moscow Mathematical Society, 2014, 75, 233–258

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025