RUS  ENG
Full version
JOURNALS // Trudy Moskovskogo Matematicheskogo Obshchestva // Archive

Tr. Mosk. Mat. Obs., 2017 Volume 78, Issue 1, Pages 89–100 (Mi mmo590)

This article is cited in 1 paper

Examples of lattice-polarized $K3$ surfaces with automorphic discriminant, and Lorentzian Kac–Moody algebras

Valery Gritsenkoab, Viacheslav V. Nikulincd

a Laboratoire Paul Painlevé et IUF, Université de Lille 1, France
b National Research University “Higher School of Economics”, Russian Federation
c Steklov Mathematical Institute, ul. Gubkina 8, GSP-1, Russia
d Department of Pure Mathematics, The University of Liverpool, Liverpool L69 3BX, United Kingdom

Abstract: Using our results about Lorentzian Kac–Moody algebras and arithmetic mirror symmetry, we give six series of examples of lattice-polarized $K3$ surfaces with automorphic discriminant.

Key words and phrases: $K3$ surface, Picard lattice, polarization, moduli space, degeneration, discriminant, Lie algebra, Kac–Moody algebra, root system, automorphic form.

UDC: 512.774.3, 512.774.5, 512.818.4, 515.178.1

MSC: 14J15, 14J28, 14J33, 14J60, 14J81

Received: 14.03.2017
Revised: 13.04.2017


 English version:
Transactions of the Moscow Mathematical Society, 2017, 78, 75–83

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025