RUS  ENG
Full version
JOURNALS // Trudy Moskovskogo Matematicheskogo Obshchestva // Archive

Tr. Mosk. Mat. Obs., 2017 Volume 78, Issue 2, Pages 227–260 (Mi mmo599)

This article is cited in 9 papers

The dual group of a spherical variety

F. Knop, B. Schalke

Dept. Mathematik, FAU Erlangen-Nürnberg, Germany

Abstract: Let $X$ be a spherical variety for a connected reductive group $G$. Work of Gaitsgory–Nadler strongly suggests that the Langlands dual group $G^\vee$ of $G$ has a subgroup whose Weyl group is the little Weyl group of $X$. Sakellaridis–Venkatesh defined a refined dual group $G^\vee_X$ and verified in many cases that there exists an isogeny $\varphi$ from $G^\vee_X$ to $G^\vee$. In this paper, we establish the existence of $\varphi$ in full generality. Our approach is purely combinatorial and works (despite the title) for arbitrary $G$-varieties.

Key words and phrases: spherical varieties, Langlands dual groups, root systems, algebraic groups, reductive groups.

UDC: 512.745, 512.813.4, 512.743.5

MSC: 17B22, 14L30, 11F70

Received: 27.03.2017
Revised: 14.05.2017

Language: English


 English version:
Transactions of the Moscow Mathematical Society, 2017, 78, 187–216

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024