Abstract:
Here are two problems. First, understand the dynamics of a tiling billiard in a cyclic quadrilateral periodic tiling. Second, describe the topology of connected components of plane sections of a centrally symmetric subsurface $S \subset \mathbb{T}^3$ of genus $3$. In this note we show that these two problems are related via a helicoidal construction proposed recently by Ivan Dynnikov. The second problem is a particular case of a classical question formulated by Sergei Novikov. The exploration of the relationship between a large class of tiling billiards (periodic locally foldable tiling billiards) and Novikov's problem in higher genus seems promising, as we show in the end of this note.
Key words and phrases:Novikov's problem, tiling billiards, billiards, translation surfaces.