RUS  ENG
Full version
JOURNALS // Matematicheskie Trudy // Archive

Mat. Tr., 2002 Volume 5, Number 1, Pages 135–166 (Mi mt105)

This article is cited in 1 paper

$\omega$-Stable Trigonometries on a Projective Plane

S. V. Sudoplatov

Novosibirsk State Technical University

Abstract: Using the well-known Hrushovski construction, we prove that, for every countable group $G$, there exists an $\omega$-stable trigonometry of the group $G\ast F_\omega$, where $F_\omega$ is the free group of countable rank, on a non-Desarguesian projective plane. We also suggest a new approach to constructing generic models.

Key words: trigonometry of a group, projective plane, $\omega$-stable theory, generic trigonometry.

UDC: 510.67+513

Received: 24.10.2001


 English version:
Siberian Advances in Mathematics, 2002, 12:4, 97–125

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025