Abstract:
In this article, we extend some results of infinitesimal analysis on normed spaces and the field of reals to the functional representation of a Boolean-valued universe. In particular, we prove equivalence of the following three conditions for an arbitrary polyverse over $Q$: a point $q\in Q$ is not $\sigma$-isolated; the stalk of the polyverse at $q$ is countably saturated; and the nonstandard hull of every normed space in the stalk of the polyverse at $q$ is complete.